decision tree classifier

29

# Import DecisionTreeClassifier from sklearn.tree
from sklearn.tree import DecisionTreeClassifier

# Instantiate a DecisionTreeClassifier 'dt' with a maximum depth of 6
dt = DecisionTreeClassifier(max_depth=6, criterion='entropy///gini', random_state=1)

# Fit dt to the training set
dt.fit(X_train, y_train)

# Predict test set labels
y_pred = dt.predict(X_test)
print(y_pred[0:5])
# Import accuracy_score
from sklearn.metrics import accuracy_score

# Compute test set accuracy  
acc = accuracy_score(y_test, y_pred)
print("Test set accuracy: {:.2f}".format(acc))
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
decision_tree = decision_tree.fit(iris.data, iris.target)
r = export_text(decision_tree, feature_names=iris['feature_names'])
print(r)


# Create Decision Tree classifer object
clf = DecisionTreeClassifier()

# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)

#Predict the response for test dataset
y_pred = clf.predict(X_test)
import graphviz 
dot_data = tree.export_graphviz(clf, out_file=None) 
graph = graphviz.Source(dot_data) 
graph.render("iris") 
from sklearn.datasets import load_iris
from sklearn import tree
X, y = load_iris(return_X_y=True)
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, y)

Comments

Submit
0 Comments